4.4 Article Proceedings Paper

Mechanical properties of the electrically silent adult rat soleus muscle

期刊

MUSCLE & NERVE
卷 26, 期 3, 页码 404-412

出版社

JOHN WILEY & SONS INC
DOI: 10.1002/mus.10219

关键词

fatigue; maximum shortening velocity; neurotrophic effects; skeletal muscle inactivity; specific tension

资金

  1. NINDS NIH HHS [NS 16333] Funding Source: Medline

向作者/读者索取更多资源

The isometric and isotonic in situ mechanical properties of the soleus muscle of adult female rats were determined after 60 days of inactivity induced by spinal cord isolation (SI). Compared to control, the absolute muscle mass, physiological cross-sectional area, and maximum tetanic tension of the soleus in SI rats were reduced by 69%, 66%, and 77%, respectively. Isometric twitch time-to-peak-tension and half-relaxation times were 41% and 60% shorter in SI than control rats. The maximum velocity of shortening (mm/s), as determined using the afterloaded technique, was 66% faster in SI than control rats, whereas unloaded shortening velocity was similar in the two groups (9% faster in SI rats). Peak power was 48% lower in SI than control rats. The SI soleus was 39% more fatigable than control. Thus, the soleus became a smaller, faster, and more fatigable muscle following 60 days of inactivity. In general, the results indicate that the adaptations are of a lesser magnitude than those reported previously following denervation for the same duration. These data provide a baseline for future efforts to experimentally define the mechanisms of neurally mediated, but activity-independent, regulation of the mechanical properties of the rat soleus muscle. (C) 2002 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据