4.7 Article

ASTROMETRY AND RADIAL VELOCITIES OF THE PLANET HOST M DWARF GJ 317: NEW TRIGONOMETRIC DISTANCE, METALLICITY, AND UPPER LIMIT TO THE MASS OF GJ 317b

期刊

ASTROPHYSICAL JOURNAL
卷 746, 期 1, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/746/1/37

关键词

astrometry; planetary systems; stars: individual (GJ 317); techniques: radial velocities

资金

  1. Carnegie Postdoctoral Fellowship
  2. NASA Astrobiology Institute [NNA09DA81A]
  3. Carnegie Observatories TAC
  4. NASA OSS [NNX07AR40G]
  5. Carnegie Institution of Washington
  6. NSF [AST-0307493]
  7. UC-Keck and NASA-Keck Time Assignment Committees
  8. Direct For Mathematical & Physical Scien
  9. Division Of Astronomical Sciences [0908870] Funding Source: National Science Foundation

向作者/读者索取更多资源

We have obtained precision astrometry of the planet host M dwarf GJ 317 in the framework of the Carnegie Astrometric Planet Search project. The new astrometric measurements give a distance determination of 15.3 pc, 65% further than previous estimates. The resulting absolute magnitudes suggest that it is metal-rich and more massive than previously assumed. This result strengthens the correlation between high metallicity and the presence of gas giants around low-mass stars. At 15.3 pc, the minimal astrometric amplitude for planet candidate GJ 317b is 0.3 mas (edge-on orbit), just below our astrometric sensitivity. However, given the relatively large number of observations and good astrometric precision, a Bayesian Monte Carlo Markov Chain analysis indicates that the mass of planet b has to be smaller than twice the minimum mass with a 99% confidence level, with a most likely value of 2.5 M-Jup. Additional radial velocity (RV) measurements obtained with Keck by the Lick-Carnegie Planet search program confirm the presence of an additional very long period planet candidate, with a period of 20 years or more. Even though such an object will imprint a large astrometric wobble on the star, its curvature is yet not evident in the astrometry. Given high metallicity, and the trend indicating that multiple systems are rich in low-mass companions, this system is likely to host additional low-mass planets in its habitable zone that can be readily detected with state-of-the-art optical and near-infrared RV measurements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据