4.7 Article

VERY LARGE ARRAY OBSERVATIONS OF AMMONIA IN INFRARED-DARK CLOUDS. II. INTERNAL KINEMATICS

期刊

ASTROPHYSICAL JOURNAL
卷 746, 期 2, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/746/2/174

关键词

Galaxy: structure; ISM: clouds; ISM: kinematics and dynamics; radio lines: ISM; stars: formation; techniques: interferometric; techniques: spectroscopic

资金

  1. National Science Foundation [0707777, AST-0807305]
  2. Direct For Mathematical & Physical Scien [0707777] Funding Source: National Science Foundation
  3. Division Of Astronomical Sciences [0707777] Funding Source: National Science Foundation

向作者/读者索取更多资源

Infrared-dark clouds (IRDCs) are believed to be the birthplaces of rich clusters and thus contain the earliest phases of high-mass star formation. We use the Green Bank Telescope and Very Large Array maps of ammonia (NH3) in six IRDCs to measure their column density and temperature structure (Paper 1), and here, we investigate the kinematic structure and energy content. We find that IRDCs overall display organized velocity fields, with only localized disruptions due to embedded star formation. The local effects seen in NH3 emission are not high-velocity outflows but rather moderate (few km s(-1)) increases in the linewidth that exhibit maxima near or coincident with the mid-infrared emission tracing protostars. These linewidth enhancements could be the result of infall or (hidden in NH3 emission) outflow. Not only is the kinetic energy content insufficient to support the IRDCs against collapse, but also the spatial energy distribution is inconsistent with a scenario of turbulent cloud support. We conclude that the velocity signatures of the IRDCs in our sample are due to active collapse and fragmentation, in some cases augmented by local feedback from stars.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据