4.6 Article

C2C12 myocytes lack an insulin-responsive vesicular compartment despite dexamethasone-induced GLUT4 expression

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpendo.00092.2002

关键词

glucocorticoid; skeletal muscle; insulin; glucose transporter; C2C12 cells; protein trafficking

资金

  1. NIDDK NIH HHS [DK-27201, DK-30425, DK-49147] Funding Source: Medline

向作者/读者索取更多资源

Insulin regulates the uptake of glucose into skeletal muscle and adipocytes by redistributing the tissue-specific glucose transporter GLUT4 from intracellular vesicles to the cell surface. To date, GLUT4 is the only protein involved in insulin-regulated vesicular traffic that has this tissue distribution, thus raising the possibility that its expression alone may allow formation of an insulin-responsive vesicular compartment. We show here that treatment of differentiating C2C12 myoblasts with dexamethasone, acting via the glucocorticoid receptor, causes a greater than or equal to10-fold increase in GLUT4 expression but results in no significant change in insulin-stimulated glucose transport. Signaling from the insulin receptor to its target, Akt2, and expression of the soluble N-ethylmaleimide-sensitive factor-attachment protein receptor, or SNARE, proteins syntaxin 4 and vesicle-associated membrane protein are normal in dexamethasone-treated C2C12 cells. However, these cells show no insulin-dependent trafficking of the insulin-responsive aminopeptidase or the transferrin receptor, respective markers for intracellular GLUT4-rich compartments and endosomes that are insulin responsive in mature muscle and adipose cells. Therefore, these data support the hypothesis that GLUT4 expression by itself is insufficient to establish an insulin-sensitive vesicular compartment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据