4.8 Article

Equilibrium gradient methods with nonlinear field intensity gradient: A theoretical approach

期刊

ANALYTICAL CHEMISTRY
卷 74, 期 17, 页码 4456-4463

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac020027w

关键词

-

向作者/读者索取更多资源

Equilibrium gradient methods belong to a family of separation techniques in which analytes are forced to unique equilibrium points by a force gradient and a counter force along the separation pathway. The basic theory for equilibrium gradient methods where the force gradient is induced by a field gradient is developed in this paper. The results indicate that peak capacity can be dynamically improved by using a nonlinear field-intensity gradient in which the first section is steep, and the following section is shallow. Using electromobility focusing (EMF) as an example, a separation model is established. EMIT is an equilibrium gradient method that uses an electric field intensity gradient to induce a force gradient on charged analytes, such as proteins, and a constant hydrodynamic flow as an opposing force. Equations relating operating parameters with separation performance are given. Although simulation results show that a peak capacity of over 10 000 is theoretically possible using a single channel in a separation time just under 2 months, if 100 parallel separation units are utilized in an array format under the same operating conditions, the same peak capacity can be obtained in just over 12 h.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据