4.7 Article

THE STELLAR-ACTIVITY-ROTATION RELATIONSHIP AND THE EVOLUTION OF STELLAR DYNAMOS

期刊

ASTROPHYSICAL JOURNAL
卷 743, 期 1, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/743/1/48

关键词

stars: activity; stars: coronae; stars: evolution; stars: late-type; stars: magnetic field; stars: rotation; X-rays: stars

资金

  1. Chandra [AR9-0003X]
  2. NASA [NAS8-39073]
  3. NASA
  4. NSF
  5. Tennessee State University
  6. State of Tennessee

向作者/读者索取更多资源

We present a sample of 824 solar and late-type stars with X-ray luminosities and rotation periods. This is used to study the relationship between rotation and stellar activity and derive a new estimate of the convective turnover time. From an unbiased subset of this sample the power-law slope of the unsaturated regime, L(X)/L(bol) alpha Ro(beta), is fit as beta = -2.70 +/- 0.13. This is inconsistent with the canonical beta = -2 slope to a confidence of 5 sigma, and argues for an additional term in the dynamo number equation. From a simple scaling analysis this implies Delta Omega/Omega alpha Omega(0.7), i.e., the differential rotation of solar-type stars gradually declines as they spin down. Supersaturation is observed for the fastest rotators in our sample and its parametric dependencies are explored. Significant correlations are found with both the corotation radius and the excess polar updraft, the latter theory providing a stronger dependence and being supported by other observations. We estimate mass-dependent empirical thresholds for saturation and supersaturation and map out three regimes of coronal emission. Late F-type stars are shown never to pass through the saturated regime, passing straight from supersaturated to unsaturated X-ray emission. The theoretical threshold for coronal stripping is shown to be significantly different from the empirical saturation threshold (Ro < 0.13), suggesting it is not responsible. Instead we suggest that a different dynamo configuration is at work in stars with saturated coronal emission. This is supported by a correlation between the empirical saturation threshold and the time when stars transition between convective and interface sequences in rotational spin-down models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据