4.7 Article

RESOLVED IMAGES OF LARGE CAVITIES IN PROTOPLANETARY TRANSITION DISKS

期刊

ASTROPHYSICAL JOURNAL
卷 732, 期 1, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/732/1/42

关键词

circumstellar matter; planet-disk interactions; planets and satellites: formation; protoplanetary disks; submillimeter: planetary systems

资金

  1. Smithsonian Institution
  2. Academia Sinica

向作者/读者索取更多资源

Circumstellar disks are thought to experience a rapid transition phase in their evolution that can have a considerable impact on the formation and early development of planetary systems. We present new and archival high angular resolution (0 ''.3 approximate to 40-75 AU) Submillimeter Array (SMA) observations of the 880 mu m (340 GHz) dust continuum emission from 12 such transition disks in nearby star-forming regions. In each case, we directly resolve a dust-depleted disk cavity around the central star. Using two-dimensional Monte Carlo radiative transfer calculations, we interpret these dust disk structures in a homogeneous, parametric model framework by reproducing their SMA continuum visibilities and spectral energy distributions. The cavities in these disks are large (R-cav = 15-73 AU) and substantially depleted of small (similar to mu m-sized) dust grains, although their mass contents are still uncertain. The structures of the remnant material at larger radii are comparable to normal disks. We demonstrate that these large cavities are relatively common among the millimeter-bright disk population, comprising at least 1 in 5 (20%) of the disks in the bright half (and >= 26% of the upper quartile) of the millimeter luminosity (disk mass) distribution. Utilizing these results, we assess some of the physical mechanisms proposed to account for transition disk structures. As has been shown before, photoevaporation models do not produce the large cavity sizes, accretion rates, and disk masses representative of this sample. A sufficient decrease of the dust optical depths in these cavities by particle growth would be difficult to achieve: substantial growth (to meter sizes or beyond) must occur in large (tens of AU) regions of low turbulence without also producing an abundance of small particles. Given those challenges, we suggest instead that the observations are most commensurate with dynamical clearing due to tidal interactions with low-mass companions-very young (similar to 1 Myr) brown dwarfs or giant planets on long-period orbits.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据