4.7 Article

DENSITY ESTIMATION FOR PROJECTED EXOPLANET QUANTITIES

期刊

ASTROPHYSICAL JOURNAL
卷 733, 期 1, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/0004-637X/733/1/68

关键词

astrobiology; binaries: spectroscopic; methods: analytical; methods: data analysis; methods: statistical; planetary systems; techniques: radial velocities

向作者/读者索取更多资源

Exoplanet searches using radial velocity (RV) and microlensing (ML) produce samples of projected mass and orbital radius, respectively. We present a new method for estimating the probability density distribution (density) of the unprojected quantity from such samples. For a sample of n data values, the method involves solving n simultaneous linear equations to determine the weights of delta functions for the raw, unsmoothed density of the unprojected quantity that cause the associated cumulative distribution function (CDF) of the projected quantity to exactly reproduce the empirical CDF of the sample at the locations of the n data values. We smooth the raw density using nonparametric kernel density estimation with a normal kernel of bandwidth sigma. We calibrate the dependence of sigma on n by Monte Carlo experiments performed on samples drawn from a theoretical density, in which the integrated square error is minimized. We scale this calibration to the ranges of real RV samples using the Normal Reference Rule. The resolution and amplitude accuracy of the estimated density improve with n. For typical RV and ML samples, we expect the fractional noise at the PDF peak to be approximately 80 n(-log 2). For illustrations, we apply the new method to 67 RV values given a similar treatment by Jorissen et al. in 2001, and to the 308 RV values listed at exoplanets.org on 2010 October 20. In addition to analyzing observational results, our methods can be used to develop measurement requirements-particularly on the minimum sample size n-for future programs, such as the microlensing survey of Earth-like exoplanets recommended by the Astro 2010 committee.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据