4.7 Article

THE DELAY OF POPULATION III STAR FORMATION BY SUPERSONIC STREAMING VELOCITIES

期刊

ASTROPHYSICAL JOURNAL
卷 736, 期 2, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/736/2/147

关键词

cosmology: theory; early universe; hydrodynamics; methods: numerical; stars: formation

资金

  1. Baden-Wurttemberg Stiftung [P-LS-SPII/18]
  2. German Bundesministerium fur Bildung und Forschung [05A09VHA]

向作者/读者索取更多资源

It has recently been demonstrated that coherent relative streaming velocities of order 30 km s(-1) between dark matter and gas permeated the universe on scales below a few Mpc directly after recombination. Here we use a series of high-resolution moving-mesh calculations to show that these supersonic motions significantly influence the virialization of the gas in minihalos and delay the formation of the first stars. As the gas streams into minihalos with bulk velocities around 1 km s(-1) at z similar to 20, the additional momentum and energy input reduces the gas fractions and central densities of the halos, increasing the typical virial mass required for efficient cooling by a factor of three and delaying Population III star formation by Delta z similar or equal to 4. Since the distribution of the magnitude of the streaming velocities is narrowly peaked around a non-negligible value, this effect is important in most regions of the universe. As a consequence, the increased minimum halo mass implies a reduction of the absolute number of minihalos that can be expected to cool and form Population III stars by up to an order of magnitude. We further find that the streaming velocities increase the turbulent velocity dispersion of the minihalo gas, which could affect its ability to fragment and hence alter the mass function of the first stars.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据