4.8 Article

Calmodulin kinase II and arrhythmias in a mouse model of cardiac hypertrophy

期刊

CIRCULATION
卷 106, 期 10, 页码 1288-1293

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/01.CIR.0000027583.73268.E7

关键词

arrhythmia; calcium; signal transduction

资金

  1. NHLBI NIH HHS [HL03727, HL62494] Funding Source: Medline

向作者/读者索取更多资源

Background-Calmodulin kinase (CaMK) 11 is linked to arrhythmia mechanisms in cellular models where repolarization is prolonged. CaMKII upregulation and prolonged repolarization are general features of cardiomyopathy, but the role of CaMKII in arrhythmias in cardiomyopathy is unknown. Methods and Results-We studied a mouse model of cardiac hypertrophy attributable to transgenic (TG) overexpression of a constitutively active form of CaMKIV that also has increased endogenous CaMKII activity. ECG-telemetered TG mice had significantly more arrhythmias than wild-type (WT) littermate controls at baseline, and arrhythmias were additionally increased by isoproterenol. Arrhythmias were significantly suppressed by an inhibitory agent targeting endogenous CaMKIL TG mice had longer QT intervals and action potential durations than WT mice, and TG cardiomyocytes had frequent early afterdepolarizations (EADs), a hypothesized mechanism for triggering arrhythmias. EADs were absent in WT cells before and after isoproterenol, whereas EAD frequency was unaffected by isoproterenol in TG mice. L-type Ca2+ channels (LTTCs) can activate EADs, and LTCC opening probability (Po) was significantly higher in TG than WT cardiomyocytes before and after isoproterenol. A CaMKII inhibitory peptide equalized TG and WT LTCC Po and eliminated EADs, whereas a peptide antagonist of the Na+/Ca2+ exchanger current, also hypothesized to support EADs, was ineffective. Conclusions-These findings support the hypothesis that CaMKII is a proarrhythmic signaling molecule in cardiac hypertrophy in vivo. Cellular studies point to EADs as a triggering mechanism for arrhythmias but suggest that the increase in arrhythmias after beta-adrenergic stimulation is independent of enhanced EAD frequency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据