4.8 Article

De-etiolated 1 and damaged DNA binding protein 1 interact to regulate Arabidopsis photomorphogenesis

期刊

CURRENT BIOLOGY
卷 12, 期 17, 页码 1462-1472

出版社

CELL PRESS
DOI: 10.1016/S0960-9822(02)01106-5

关键词

-

向作者/读者索取更多资源

Background: Plant development is exquisitely sensitive to light. Seedlings grown in the dark have a developmentally arrested etiolated phenotype, whereas in the light they develop leaves and complete their life cycle. Arabidopsis de-etiolated 1 (det1) mutants develop like light-grown seedlings even when grown in the dark. DET1 encodes a nuclear protein that appears to act downstream from multiple photoreceptors to regulate morphogenesis and gene expression in response to light. However, its function has remained unknown. Results: We used microarrays to examine defects in transcription in dark-grown det1 seedlings. We found extensive changes in gene expression, including many of the transcriptional responses observed in light-treated wildtype seedlings. We used an epitope-tagging approach to determine the basis of DET1 function. GFP-DET1 rescues the det1 phenotype, is localized to the nucleus, and forms an approximately 350 kDa complex, which is required for full DET1 activity. We affinity-purified the DET1 complex and identified an approximately 120 kDa copurifying protein that is the plant homolog of UV-Damaged DNA Binding Protein 1 (DDB1), a protein implicated in the human disease xeroderma pigmentosa. A null mutation in Arabidopsis DDB1A results in no obvious phenotype on its own, yet it enhances the phenotype of a weak det1 allele. Conclusions: DET1 and DDB1 interact both biochemically and genetically. In animal cells, DDB1 interacts with histone acetyltransferase complexes. The DET1/DDB1 complex may regulate gene expression in response to light via recruitment of HAT activity. Thus, DET1, whose sequence is conserved in both animals and plants, may play a direct role in the regulation of many genes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据