4.8 Article

Sterols block binding of COPII proteins to SCAP, thereby controlling SCAP sorting in ER

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.182412799

关键词

-

资金

  1. NHLBI NIH HHS [P01 HL020948, HL-20948] Funding Source: Medline

向作者/读者索取更多资源

Sterols inhibit their own synthesis in mammalian cells by blocking the vesicular endoplasmic reticulum-to-Golgi transport of sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP), a sterol-sensing protein that escorts SREBPs. Unable to reach the Golgi, SREBPs are not processed by Golgi-resident proteases, and they fail to activate genes required for cholesterol synthesis. The current studies were designed to reveal whether sterols block SCAP movement by inhibiting synthesis of special vesicles dedicated to SCAP, or whether sterols block SCAP incorporation into common coat protein (COP)II-coated vesicles. Through immumoisolation, we show that SCAP-containing vesicles, formed in vitro, also contain vesicular stomatitis virus glycoprotein (VSVG) protein, a classic marker of COPII-coated vesicles. Sterols selectively block incorporation of SCAP into these vesicles without blocking incorporation of VSVG protein. We show that the mammalian vesicular budding reaction can be reconstituted by recombinant yeast COPII proteins that support incorporation of SCAP as well as VSVG into vesicles. Sterols block SCAP incorporation into vesicles by blocking Sar1-dependent binding of the COPII proteins Sec 23/24 to SCAR These studies demonstrate feedback control of a biosynthetic pathway by the regulated binding of COPII proteins to an endoplasmic reticulum-to-Golgi transport protein.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据