4.7 Article

Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles

期刊

INTERNATIONAL JOURNAL OF PHARMACEUTICS
卷 244, 期 1-2, 页码 105-115

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S0378-5173(02)00315-0

关键词

non-viral vectors; gene therapy; biodegradable polymers; cellular uptake

资金

  1. NHLBI NIH HHS [HL-57234] Funding Source: Medline

向作者/读者索取更多资源

Nanoparticles formulated from biodegradable polymers such as poly (lactic acid) and Poly (D,L-lactide-co-glycolide) (PLGA) are being extensively investigated as non-viral gene delivery systems due to their sustained release characteristics and biocompatibility. PLGA nanoparticles for DNA delivery are mainly formulated using an emulsion-solvent evaporation technique. However, this formulation procedure results in the formation of particles with heterogeneous size distribution. The objective of the present study was to determine the relative transfectivity of the smaller- and the larger-sized fractions of nanoparticles in cell culture. PLGA nanoparticles containing a plasmid DNA encoding luciferase protein as a marker were formulated by a multiple emulsion-solvent evaporation method (mean particle diameter = 97 +/- 3 nm) and were fractionated using a membrane (pore size: 100 nm) filtration technique. The particles that passed through the membrane were designated as the smaller-sized nanoparticles (mean diameter = 70 +/- 2 nm) and the fraction that was retained on the membrane as the larger-sized nanoparticles (mean diameter = 202 +/- 9 nm). The smaller-sized nanoparticles showed a 27-fold higher transfection than the larger-sized nanoparticles in COS-7 cell line and a 4-fold higher transfection in HEK-293 cell line. The surface charge (zeta potential), cellular uptake, and the DNA release were almost similar for the two fractions of nanoparticles, suggesting that some other yet unknown factor(s) is responsible for the observed differences in the transfection levels. The results suggest that the particle size is an important factor, and that the smaller-sized fraction of the nanoparticle formulation predominantly contributes towards their transfection. (C) 2002 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据