4.8 Article

Transparency of magnetized plasma at the cyclotron frequency

期刊

PHYSICAL REVIEW LETTERS
卷 89, 期 11, 页码 -

出版社

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevLett.89.115003

关键词

-

向作者/读者索取更多资源

Electromagnetic radiation is strongly absorbed by a magnetized plasma if the radiation frequency equals the cyclotron frequency of plasma electrons. It is demonstrated that absorption can be completely canceled in the presence of a magnetostatic field of an undulator, or a second radiation beam, resulting in plasma transparency at the cyclotron frequency. This effect is reminiscent of the electromagnetically induced transparency (EIT) of three-level atomic systems, except that it occurs in a completely classical plasma. Unlike the atomic systems, where all the excited levels required for EIT exist in each atom, this classical EIT requires the excitation of nonlocal plasma oscillation. A Lagrangian description was used to elucidate the physics of the plasma transparency and control of group and phase velocity. This control leads to applications for electromagnetic pulse compression and electron/ion acceleration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据