4.7 Article

Detection and characterization of xenon-binding sites in proteins by 129Xe NMR spectroscopy

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 322, 期 2, 页码 425-440

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/S0022-2836(02)00739-8

关键词

hydrophobic cavities; ligand-protein interactions; xenon binding; multiple isomorphous replacement; protein conformation assay

向作者/读者索取更多资源

Xenon-binding sites in proteins have led to a number of applications of xenon in biochemical and structural studies. Here we further develop the utility of Xe-129 NMR in characterizing specific xenon-protein interactions. The sensitivity of the Xe-129 chemical shift to its local environment and the intense signals attainable by optical pumping make xenon a useful NMR reporter of its own interactions with proteins. A method for detecting specific xenon-binding interactions by analysis of Xe-129 chemical shift data is illustrated using the maltose binding protein (MBP) from Escherichia coli as an example. The crystal structure of MBP in the presence of 8 atm of xenon confirms the binding site determined from NMR data. Changes in the structure of the xenon-binding cavity upon the binding of maltose by the protein can account for the sensitivity of the Xe-129 chemical shift to MBP conformation. Xe-129 NMR data for xenon in solution with a number of cavity containing phage T4 lysozyme mutants show that xenon can report on cavity structure. In particular, a correlation exists between cavity size and the binding-induced Xe-129 chemical shift. Further applications of Xe-129 NMR to biochemical assays, including the screening of proteins for xenon binding for crystallography are considered. (C) 2002 Elsevier Science Ltd. All rights reserved

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据