4.6 Article

Elevated Akt phosphorylation as an indicator of renal tubular epithelial cell stress

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 277, 期 37, 页码 33943-33949

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M201338200

关键词

-

向作者/读者索取更多资源

Characterization of the phosphoinositide 3-kinase-signaling pathway in a human renal tubular epithelial cell (TEC) line HKC-8 revealed high levels of Akt phosphorylation in serum-starved cultures. In contrast to Erk1/2, little additional phosphorylation of Akt was observed after cytokine or serum stimulation. Replacement of the conditioned medium attenuated Akt phosphorylation such that 90 min after the addition of warmed serum-free media, Akt phosphorylation. had fallen sufficiently to allow an epidermal growth factor-stimulated increase to be detected readily. Although the mechanism by which the phosphoinositide 3-kinase/Akt pathway is activated in serum-starved TEC is unknown, the mediator responsible is secreted from these cells. Thus, conditioned media removed from a dish of quiescent TECs stimulated Akt phosphorylation in washed TEC cultures within 10 min. Biochemical characterization of the bioactive agent identified a heat labile factor of small apparent molecular mass. The basal level of Akt phosphorylation observed in serum-starved cultures was inhibited by wortmannin at concentrations that demonstrated its dependence on 3-phosphoinositide synthesis (IC50 = 8 nm). Regular removal of conditioned media from TEC cultures and its replacement with serum free media resulted in a sustained attenuation of Akt phosphorylation. Interestingly, after 5 days of this treatment, washed TEC cultures contained a greater number of viable cells than cultures maintained in conditioned media throughout. This observation was not explained by a difference in the rate of DNA synthesis. Instead, the number of cells undergoing apoptosis increased markedly in the unwashed cultures. Consequently, we propose that in HKC-8 cells Akt phosphorylation is up-regulated in an effort to minimize cell death. This stress-activated response is initiated by a factor secreted into the conditioned medium that stimulates the phosphoinositide 3-kinase signaling pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据