4.7 Article

Mineralogy of phyllosilicate-rich micrometeorites and comparison with Tagish Lake and Sayama meteorites

期刊

EARTH AND PLANETARY SCIENCE LETTERS
卷 202, 期 2, 页码 229-246

出版社

ELSEVIER
DOI: 10.1016/S0012-821X(02)00777-X

关键词

micrometeorites; Tagish Lake Meteorite; Sayama Meteorite; transmission electron microscopy; sheet silicates

向作者/读者索取更多资源

Four phyllosilicate-rich micrometeorites (MMs) were investigated by a synchrotron radiation X-ray diffraction technique and transmission electron microscopy. Three are saponite-rich MMs and one is a serpentine-rich one. In the saponite-rich MMs, we could not find serpentine, and vice versa in the serpentine-rich MM. In the saponite-rich MMs, major constituent minerals are saponite, Fe- and Ni-bearing sulfides, and magnetite. Two saponite-rich MMs contain fine-grained magnesiowustite-rich aggregates. The aggregates consist of < 50 nm polygonal magnesiowustite coexisting with minor Fe sulfide grains. Their texture, chemical composition, and the result of heating experiments on matrix fragments of the Tagish Lake carbonaceous chondrite strongly suggest that these aggregates were formed by the breakdown of Mg- and Fe-rich carbonate grains when the MMs entered the Earth's atmosphere. The estimated major mineral assemblage of the saponite-rich MMs before entering the Earth's atmosphere is very similar to that of the Tagish Lake carbonate-rich lithology, and we suggest that the MMs and the meteorite were derived from similar asteroids. The major mineral assemblage and texture of the matrix of serpentine-rich MM are similar to the matrix of the Sayama CM2 chondrite that experienced heavy aqueous alteration. Chemical compositions of serpentine in the MM suggest that the degree of aqueous alteration of the MM is weaker than that of Sayama. In the MM, cronstedtite does not coexist with tochilinite, which is different from CM2 chondrites that experienced weak to moderate aqueous alteration. However, the possibility that the serpentine-rich MM was derived from the CM chondrite asteroid cannot be ruled out, because tochilinite can be preferentially decomposed during atmospheric entry heating due to its lower decomposition temperature than that of cronstedtite. (C) 2002 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据