4.7 Article

MEASURING THE DARK FLOW WITH PUBLIC X-RAY CLUSTER DATA

期刊

ASTROPHYSICAL JOURNAL
卷 732, 期 1, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/732/1/1

关键词

cosmic background radiation; cosmology: observations; early universe; inflation; large-scale structure of universe

资金

  1. Spanish Ministerio de Educacion y Ciencia/Junta de Castilla y Leon [NNG04G089G/09-ADP09-0050, FIS2009-07238/GR-234/SyEC CSD 2007-00050]
  2. Direct For Mathematical & Physical Scien [0855241] Funding Source: National Science Foundation
  3. Division Of Physics [0855241] Funding Source: National Science Foundation
  4. Division Of Physics
  5. Direct For Mathematical & Physical Scien [0855291] Funding Source: National Science Foundation

向作者/读者索取更多资源

We present new results on the dark flow from a measurement of the dipole in the distribution of peculiar velocities of galaxy clusters, applying the methodology proposed and developed by us earlier. Our latest measurement is conducted using new, low-noise 7 yr WMAP data as well as an all-sky sample of X-ray-selected galaxy clusters compiled exclusively from published catalogs. Our analysis of the cosmic microwave background signature of the kinematic Sunyaev-Zel'dovich (SZ) effect finds a statistically significant dipole at the location of galaxy clusters. The residual dipole outside the cluster regions is small, rendering our overall measurement 3s-4s significant. The amplitude of the dipole correlates with cluster properties, being larger for the most X-ray luminous clusters, as required if the signal is produced by the SZ effect. Since it is measured at zero monopole, the dipole cannot be due to the thermal SZ effect. Our results are consistent with those obtained earlier by us from 5 yr WMAP data and using a proprietary cluster catalog. In addition, they are robust to quadrupole removal, demonstrating that quadrupole leakage contributes negligibly to the signal. The lower noise of the 7 yr WMAP also allows us, for the first time, to obtain tentative empirical confirmation of our earlier conjecture that the adopted filtering alters the sign of the kinematic SZ (KSZ) effect for realistic clusters and thus of the deduced direction of the flow. The latter is consistent with our earlier measurement in both the amplitude and direction. Assuming the filtering indeed alters the sign of the KSZ effect from the clusters, the direction agrees well also with the results of independent work using galaxies as tracers at lower distances. We make all maps and cluster templates derived by us from public data available to the scientific community to allow independent tests of our method and findings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据