4.7 Article

QUARK-NOVAE IN LOW-MASS X-RAY BINARIES. II. APPLICATION TO G87-7 AND TO GRB 110328A

期刊

ASTROPHYSICAL JOURNAL
卷 743, 期 2, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/743/2/116

关键词

binaries: close; gamma-ray burst: general; stars: evolution; stars: neutron; supernovae: general; white dwarfs

资金

  1. National Science and Engineering Research Council of Canada (NSERC)
  2. California State University Long Beach
  3. U.S. National Science Foundation [AST-0708551]
  4. NASA's ATP [NNX10AC72G]

向作者/读者索取更多资源

We propose a simple model explaining two outstanding astrophysical problems related to compact objects: (1) that of stars such as G87-7 (alias EG 50) that constitute a class of relatively low-mass white dwarfs (WDs) which nevertheless fall away from the C/O composition and (2) that of GRB 110328A/Swift J164449.3 + 57345 which showed spectacularly long-lived strong X-ray flaring, posing a challenge to standard gamma-ray burst models. We argue that both these observations may have an explanation within the unified framework of a quark-nova (QN) occurring in a low-mass X-ray binary (LMXB; neutron star (NS)-WD). For LMXBs, where the binary separation is sufficiently tight, ejecta from the exploding NS triggers nuclear burning in the WD on impact, possibly leading to Fe-rich composition compact WDs with mass 0.43M(circle dot) < M-WD < 0.72M(circle dot), reminiscent of G87-7. Our results rely on the assumption, which ultimately needs to be tested by hydrodynamic and nucleosynthesis simulations, that under certain circumstances the WD can avoid the thermonuclear runaway. For heavier WDs (i.e., M-WD > 0.72 M-circle dot) experiencing the QN shock, degeneracy will not be lifted when carbon burning begins, and a sub-Chandrasekhar Type Ia supernova may result in our model. Under slightly different conditions and for pure He WDs (i.e., MWD < 0.43 M-circle dot), the WD is ablated and its ashes raining down on the quark star (QS) leads to accretion-driven X-ray luminosity with energetics and duration reminiscent of GRB 110328A. We predict additional flaring activity toward the end of the accretion phase if the QS turns into a black hole.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据