4.8 Article

Singularity in budding: A role for the evolutionarily conserved small GTPase Cdc42p

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.182370299

关键词

-

资金

  1. NIGMS NIH HHS [R01 GM059216, GM59216] Funding Source: Medline

向作者/读者索取更多资源

The budding yeast Saccharomyces cerevisiae initiates polarized growth or budding once per cell cycle at a specific time of the cell cycle and at a specific location on the cell surface. Little is known about the molecular nature of the temporal and spatial regulatory mechanisms. It is also unclear what factors, if any, among the numerous proteins required to make a bud are involved in the determination of budding frequency. Here we describe a class of cdc42 mutants that produce multiple buds at random locations on the cell surface within one nuclear cycle. The critical mutation responsible for this phenotype affects amino acid residue 60, which is located in a domain required for GTIP binding and hydrolysis. This mutation bypasses the requirement for the essential guanine-nucleotide-exchange factor Cdc24p, suggesting that the alteration at residue 60 makes Cdc42p hyperactive, which was confirmed biochemically. This result also suggests that the only essential function of Cdc24p is to activate Cdc42p. Together, these data suggest that the temporal and spatial regulation of polarized growth converges at the level of Cdc42p and that the activity of Cdc42p determines the budding frequency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据