4.7 Article

A NEW METHOD FOR THE DETERMINATION OF THE GROWTH RATE FROM GALAXY REDSHIFT SURVEYS

期刊

ASTROPHYSICAL JOURNAL
卷 744, 期 2, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/0004-637X/744/2/193

关键词

dark matter; large-scale structure of universe

资金

  1. ISRAEL SCIENCE FOUNDATION [203/09]
  2. German-Israeli Foundation for Research and Development
  3. Asher Space Research Institute
  4. WINNIPEG RESEARCH FUND
  5. NSF [AST-0807630]
  6. MIUR
  7. Agenzia Spaziale Italiana (ASI-Uni Bologna-Astronomy Dept. Euclid-NIS) [I/039/10/0]

向作者/读者索取更多资源

Given a redshift survey of galaxies with measurements of apparent magnitudes, we present a novel method for measuring the growth rate f(Omega) of cosmological linear perturbations. We use the galaxy distribution within the survey to solve for the peculiar velocity field which depends in linear perturbation theory on beta = f (Omega)/b, where b is the bias factor of the galaxy distribution. The recovered line-of-sight peculiar velocities are subtracted from the redshifts to derive the distances, which thus allows an estimate of the absolute magnitude of each galaxy. A constraint on beta is then found by minimizing the spread of the estimated magnitudes from their distribution function. We apply the method to the all sky K = 11.25 2MASS Redshift Survey and derive beta = 0.35 +/- 0.1 at z similar to 0, remarkably consistent with our previous estimate from the velocity-velocity comparison. The method could easily be applied to subvolumes extracted from the Sloan Digital Sky Survey to derive the growth rate at z similar to 0.1. Further, it should also be applicable to ongoing and future spectroscopic redshift surveys to trace the evolution of f (Omega) to z similar to 1. Constraints obtained from this method are entirely independent from those obtained from the two-dimensional distortion of xi (s) and provide an important check on f (Omega), as alternative gravity models predict observable differences.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据