4.5 Article

UHV, electrochemical NMR, and electrochemical studies of Platinum/Ruthenium fuel cell catalysts

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 106, 期 37, 页码 9581-9589

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp020169u

关键词

-

向作者/读者索取更多资源

It is well-known that platinum/ruthenium fuel cell catalysts show enhanced CO tolerance compared to pure platinum electrodes, but the reasons are still being debated. We have combined cyclic voltammetry (CV), temperature programmed desorption (TPD); electrochemical nuclear magnetic resonance, and radio active labeling to probe the origin of the ruthenium enhancement in Pt electrodes modified through Ru deposition. The results prove that the addition of ruthenium not only modifies the electronic structure of all the platinum atoms but also leads to the creation of a new form of adsorbed CO. This new form of CO may be ascribed to CO chemisorbed onto the Ru region of the electrode surface. TPD and CV results show that the binding of hydrogen is substantially modified due to the presence of Ru. Surprisingly though, TPD indicates that the binding energy of CO on platinum is only weakly affected. Therefore, the changes in the bond energy of CO due to the ligand effect only play a small role in enhancing CO tolerance. Instead, we find that the main effect of ruthenium is to activate water to form OH. Quantitative estimates based on the TPD data indicate that the bifunctional mechanism is about four times larger than the ligand effect.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据