4.7 Article

THE PROTOSTELLAR LUMINOSITY FUNCTION

期刊

ASTROPHYSICAL JOURNAL
卷 736, 期 1, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/736/1/53

关键词

stars: formation; stars: luminosity function, mass function

资金

  1. NSF [AST-0908553, AST-0901055]

向作者/读者索取更多资源

The protostellar luminosity function (PLF) is the present-day luminosity function of the protostars in a region of star formation. It is determined using the protostellar mass function in combination with a stellar evolutionary model that provides the luminosity as a function of instantaneous and final stellar mass. In 2010, McKee & Offner considered three main accretion models: the isothermal sphere (IS) model, the turbulent core (TC) model, and an approximation of the competitive accretion (CA) model. We also consider the effect of an accretion rate that tapers off linearly in time and an accelerating star formation rate. For each model, we characterize the luminosity distribution using the mean, median, maximum, ratio of the median to the mean, standard deviation of the logarithm of the luminosity, and the fraction of very low luminosity objects. We compare the models with bolometric luminosities observed in local star-forming regions and find that models with an approximately constant accretion time, such as the TC and CA models, appear to agree better with observation than those with a constant accretion rate, such as the IS model. We show that observations of the mean protostellar luminosity in these nearby regions of low-mass star formation suggest a mean star formation time of 0.3 +/- 0.1 Myr. Such a timescale, together with some accretion that occurs non-radiatively and some that occurs in high-accretion, episodic bursts, resolves the classical luminosity problem in low-mass star formation, in which observed protostellar luminosities are significantly less than predicted. An accelerating star formation rate is one possible way of reconciling the observed star formation time and mean luminosity. Future observations will place tighter constraints on the observed luminosities, star formation time, and episodic accretion, enabling better discrimination between star formation models and clarifying the influence of variable accretion on the PLF.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据