4.6 Article Proceedings Paper

The 'push' effect of the thiolate ligand in cytochrome P450: a theoretical gauging

期刊

JOURNAL OF INORGANIC BIOCHEMISTRY
卷 91, 期 4, 页码 554-567

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/S0162-0134(02)00437-3

关键词

heme-enzymes; proximal ligand; O-2 activation; redox; DFT calculations

向作者/读者索取更多资源

The 'push' effect of the thiolate ligand in cytochrome P450 is investigated using density functional calculations. Theory supports Dawson's postulate that the 'push' effect is crucial for the heterolytic O-O bond cleavage of ferric-peroxide, as well as for controlling the Fe(III)/Fe(II) redox process and gating the catalytic cycle. Two energetic factors that contribute to the 'push' effect are revealed. The dominant one is the field factor (DeltaE(field)=54-103 kcal/mol) that accounts for the classical electrostatic repulsion with the negative charge of thiolate. The smaller factor is a quantum mechanical effect (DeltaE(QM)(sigma)=39 kcal/mol, DeltaE(QM)(pi)=4 kcal/mol), which is associated with the sigma- and pi-donor capabilities of thiolate. The effects of ligand replacement, changes in hydrogen bonding and dielectric screening are discussed in term of these quantities. In an environment with a dielectric constant of 5.7, the total 'push' effect is reduced to 29-33 kcal/mol. Manifestations of the 'push' effect on other properties of thiolate enzymes are discussed. (C) 2002 Elsevier Science Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据