4.6 Article

Identification of mammalian mitochondrial translational initiation factor 3 and examination of its role in initiation complex formation with natural mRNAs

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 277, 期 38, 页码 35541-35549

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M202498200

关键词

-

资金

  1. NIGMS NIH HHS [GM32734] Funding Source: Medline

向作者/读者索取更多资源

Human mitochondrial translational initiation factor 3 (IF3(mt)) has been identified from the human expressed sequence tag data base. Using consensus sequences derived from conserved regions of the bacterial IF3, several partially sequenced cDNA clones were identified, and the complete sequence was assembled in silico from overlapping clones. IF3(mt) is 278 amino acid residues in length. MitoProt II predicts a 97% probability that this protein will be localized in mitochondria and further predicts that the mature protein will be 247 residues in length. The cDNA for the predicted mature form of IF3(mt) was cloned, and the protein was expressed in Escherichia coli in a His-tagged form. The mature form of IF3(mt) has short extensions on the N and C termini surrounding a region homologous to bacterial IF3. The region of IF3(mt) homologous to prokaryotic factors ranges between 21-26% identical to the bacterial proteins. Purified IF3(mt) promotes initiation complex formation on mitochondrial 55 S ribosomes in the presence of mitochondrial initiation factor 2 (IF2(mt)), [S-35]fMet-tRNA, and either poly(A,U,G) or an in vitro transcript of the cytochrome oxidase subunit II gene as mRNA. IF3(mt) shifts the equilibrium between the 55 S mitochondrial ribosome and its subunits toward subunit dissociation. In addition, the ability of E. coli initiation factor 1 to stimulate initiation complex formation on E. coli 70 S and mitochondrial 55 S ribosomes was investigated in the presence of IF2(mt) and IF3(mt).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据