4.7 Article

THE RISE AND FALL OF PASSIVE DISK GALAXIES: MORPHOLOGICAL EVOLUTION ALONG THE RED SEQUENCE REVEALED BY COSMOS

期刊

ASTROPHYSICAL JOURNAL
卷 719, 期 2, 页码 1969-1983

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/719/2/1969

关键词

galaxies: evolution; galaxies: formation

资金

  1. NASA [HF-01215, NAS 5-26555]

向作者/读者索取更多资源

The increasing abundance of passive red-sequence galaxies since z similar to 1-2 is mirrored by a coincident rise in the number of galaxies with spheroidal morphologies. In this paper, however, we show in detail, that, the correspondence between galaxy morphology and color is not perfect, providing insight into the physical origin of this evolution. Using the COSMOS survey, we study a significant population of red-sequence galaxies with disk-like morphologies. These passive disks typically have Sa-Sb morphological types with large bulges, but they are not confined to dense environments. They represent nearly one-half of all red-sequence galaxies and dominate at lower masses (less than or similar to 10(10) M-circle dot) where they are increasingly disk-dominated. As a function of time, the abundance of passive disks with M-* less than or similar to 10(11) M-circle dot increases, but not as fast as red-sequence spheroidals in the same mass range. At higher mass, the passive disk population has declined since z similar to 1, likely because they transform into spheroidals. Based on these trends, we estimate that as much as 60% of galaxies transitioning onto the red sequence evolve through a passive disk phase. The origin of passive disks therefore has broad implications for our understanding of how star formation shuts down. Because passive disks tend to be more bulge-dominated than their star-forming counterparts, a simple fading of blue disks does not fully explain their origin. We explore the strengths and weaknesses of several more sophisticated explanations, including environmental effects, internal stabilization, and disk regrowth during gas-rich mergers. While previous work has sought to explain color and morphological transformations with a single process, these observations open the way to new insight by highlighting the fact that galaxy evolution may actually proceed through several separate stages.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据