4.7 Article

THE EARLY STAGES OF STAR FORMATION IN INFRARED DARK CLOUDS: CHARACTERIZING THE CORE DUST PROPERTIES

期刊

ASTROPHYSICAL JOURNAL
卷 715, 期 1, 页码 310-322

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/715/1/310

关键词

dust, extinction; infrared: stars; stars: formation; submillimeter: general

资金

  1. NASA [NNG04GGC92G, 1407, 1267945]
  2. NSF [AST0808001]
  3. INSU/CNRS (France)
  4. MPG (Germany)
  5. IGN (Spain)
  6. Division Of Astronomical Sciences
  7. Direct For Mathematical & Physical Scien [0808001] Funding Source: National Science Foundation

向作者/读者索取更多资源

Identified as extinction features against the bright Galactic mid-infrared background, infrared dark clouds (IRDCs) are thought to harbor the very earliest stages of star and cluster formation. In order to better characterize the properties of their embedded cores, we have obtained new 24 mu m, 60-100 mu m, and submillimeter continuum data toward a sample of 38 IRDCs. The 24 mu m Spitzer images reveal that while the IRDCs remain dark, many of the cores are associated with bright 24 mu m emission sources, which suggests that they contain one or more embedded protostars. Combining the 24 mu m, 60-100 mu m, and submillimeter continuum data, we have constructed broadband spectral energy distributions (SEDs) for 157 of the cores within these IRDCs and, using simple graybody fits to the SEDs, have estimated their dust temperatures, emissivities, opacities, bolometric luminosities, masses, and densities. Based on their Spitzer/Infrared Array Camera 3-8 mu m colors and the presence of 24 mu m point-source emission, we have separated cores that harbor active, high-mass star formation from cores that are quiescent. The active protostellar cores typically have warmer dust temperatures and higher bolometric luminosities than the more quiescent, perhaps pre-protostellar, cores. Because the mass distributions of the populations are similar, however, we speculate that the active and quiescent cores may represent different evolutionary stages of the same underlying population of cores. Although we cannot rule out low-mass star formation in the quiescent cores, the most massive of them are excellent candidates for the high-mass starless core phase, the very earliest in the formation of a high-mass star.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据