4.1 Article Proceedings Paper

Metabolism of N-acetylbenzidine and initiation of bladder cancer

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S0027-5107(02)00149-5

关键词

bladder cancer; aromatic amines; benzidine; N-acetylbenzidine; acetylation; glucuronidation; peroxidation

资金

  1. NCI NIH HHS [CA72613] Funding Source: Medline
  2. NCRR NIH HHS [RR-00954] Funding Source: Medline
  3. NIADDK NIH HHS [AM-20579] Funding Source: Medline

向作者/读者索取更多资源

A 100-fold increased incidence of bladder cancer is observed with workers exposed to high levels of benzidine (BZ). This review evaluates the overall metabolism of BZ to determine pathways involved in initiation of carcinogenesis. Enzymatic and liver slice incubations demonstrated N-acetylation and N-glucuronidation of BZ and N-acetylbenzidine (ABZ). With rat, N'N-diacetylbenzidine (DABZ) is the major slice metabolite. With human, ABZ is the major metabolite along with N-glucuronides. Differences between rat and human are attributed to preferential acetylation of BZ and deacetylation of DABZ, resulting in N-glucuronide formation by human liver. Glucuronidation of BZ and its analogues exhibited the following relative ranking of UDP-glucuronosyltransferase (UGT) metabolism: UGT1A9 > UGT1A4 much greater than UGT2B7 > UGT1A6 approximate to UGT1AI1. N-Glucuronides of BZ, ABZ, and M-hydroxy-N-acetylbenzidine (N'HA) are acid labile with the latter having a much longer t(1/2) than the former two glucuronides. O-Glucuronides are not acid labile. In urine from BZ-exposed workers, an inverse relationship between urine pH and levels of free (unconjugated) BZ and ABZ is observed. This is consistent with the presence of labile urinary N-glucuronides. Cytochrome P-450 oxidizes BZ to an inactive product (3-OH-BZ) and ABZ to N'HA and N-hydroxy-N-acetylbenzidine (NHA). Cytochrome P-450, PHS, and horseradish peroxidase activate ABZ to bind DNA forming N'-(3-monophospho-deoxyguanosin-8-yl)-N-acetylbenzidine (dGp-ABZ). This is the major adduct detected in bladder cells from workers exposed to BZ. An inverse relationship exists between urine pH and levels of bladder cell dGp-ABZ. Bladder epithelium contains relatively high levels of prostaglandin H synthase (PHS) and low levels of cytochrome P-450, suggesting activation by PHS. Activation by PHS involves a peroxygenase oxidation of ABZ to NHA, while horseradish peroxidase activates ABZ to a diimine monocation. Reactive nitrogen oxygen species (RNOS) offer a new pathway for metabolism and potential activation. Results suggest BZ initiation of bladder cancer is complex, involving multiple organs (i.e. liver, kidney, and bladder) and metabolic pathways (i.e. N-acetylation, N-glucuronidation, peroxidation, and RNOS). Published by Elsevier Science B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据