4.7 Article

THE ORBIT OF THE ORPHAN STREAM

期刊

ASTROPHYSICAL JOURNAL
卷 711, 期 1, 页码 32-49

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/711/1/32

关键词

Galaxy: halo; Galaxy: structure; stars: kinematics and dynamics

资金

  1. National Science Foundation [AST 06-06618]
  2. Alfred P. Sloan Foundation
  3. Participating Institutions
  4. National Science Foundation
  5. U.S. Department of Energy
  6. National Aeronautics and Space Administration
  7. Japanese Monbukagakusho
  8. Max Planck Society
  9. Higher Education Funding Council for England
  10. Division Of Astronomical Sciences
  11. Direct For Mathematical & Physical Scien [0809357] Funding Source: National Science Foundation

向作者/读者索取更多资源

We use recent Sloan Extension for Galactic Understanding and Exploration (SEGUE) spectroscopy and the Sloan Digital Sky Survey (SDSS) and SEGUE imaging data to measure the sky position, distance, and radial velocities of stars in the tidal debris stream that is commonly referred to as the Orphan Stream. We fit orbital parameters to the data and find a prograde orbit with an apogalacticon, perigalacticon, and eccentricity of 90 kpc, 16.4 kpc, and e = 0.7, respectively. Neither the dwarf galaxy UMa II nor the Complex A gas cloud has velocities consistent with a kinematic association with the Orphan Stream. It is possible that Segue-1 is associated with the Orphan Stream, but no other known Galactic clusters or dwarf galaxies in the Milky Way lie along its orbit. The detected portion of the stream ranges from 19 to 47 kpc from the Sun and is an indicator of the mass interior to these distances. There is a marked increase in the density of Orphan Stream stars near (l, b) = (253 degrees, 49 degrees), which could indicate the presence of the progenitor at the edge of the SDSS data. If this is the progenitor, then the detected portion of the Orphan Stream is a leading tidal tail. We find blue horizontal branch (BHB) stars and F turnoff stars associated with the Orphan Stream. The turnoff color is (g - r)(0) = 0.22. The BHB stars have a low metallicity of [Fe/H](WBG) = -2.1. The orbit is best fit to a halo potential with a halo plus disk mass of about 2.6 x 10(11) M(circle dot), integrated to 60 kpc from the Galactic center. Our fits are done to orbits rather than full N-body simulations; we show that if N-body simulations are used, the inferred mass of the galaxy would be slightly smaller. Our best fit is found with a logarithmic halo speed of v(halo) = 73 +/- 24 km s(-1), a disk+bulge mass of M(R < 60 kpc) = 1.3 x 10(11) M(circle dot), and a halo mass of M(R < 60 kpc) = 1.4 x 10(11) M(circle dot). However, we can find similar fits to the data that use a Navarro-Frenk-White halo profile or that have smaller disk masses and correspondingly larger halo masses. Distinguishing between different classes of models requires data over a larger range of distances. The Orphan Stream is projected to extend to 90 kpc from the Galactic center, and measurements of these distant parts of the stream would be a powerful probe of the mass of the Milky Way.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据