4.7 Article

Classifying Linear and Nonlinear Structural Damage Using Frequency Domain ARX Models

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/1475921702001002005

关键词

damage detection; nonlinear dynamics; frequency domain system ID

向作者/读者索取更多资源

Structural health monitoring can be viewed as a problem in statistical pattern recognition involving operational evaluation, data cleansing, damage identification, and life prediction. In damage identification, damage features derived from available input-output and output-only time and frequency data are used to detect, locate, and quantify damage in structural dynamic systems. A new set of damage features and their implementation for damage detection and quantification are discussed in this article. These features are the autoregressive and exogenous coefficients in a frequency domain data model and can be used to distinguish between linear and nonlinear types of damage. In this work, autoregressive coefficients are used to characterize nonlinear damage and exogenous coefficients are used to characterize linear damage states. The ability to distinguish between linear and nonlinear types of damage and healthy system nonlinearities is critical when diagnosing structural health because damage initiation and growth are fundamentally nonlinear processes. It is shown that absolute damage severity can sometimes be determined solely from the degree of linearity-nonlinearity in the system. Experimental data from a three-story building model is analyzed using these features and some important application issues are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据