4.7 Article

THE 10k zCOSMOS: MORPHOLOGICAL TRANSFORMATION OF GALAXIES IN THE GROUP ENVIRONMENT SINCE z ∼ 1

期刊

ASTROPHYSICAL JOURNAL
卷 718, 期 1, 页码 86-104

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/718/1/86

关键词

galaxies: clusters: general; galaxies: evolution; galaxies: high-redshift; galaxies: luminosity function, mass function; galaxies: structure

资金

  1. Swiss National Science Foundation [ASI/COFIS/WP3110I/026/07/0]

向作者/读者索取更多资源

We study the evolution of galaxies inside and outside of the group environment since z = 1 using a large well-defined set of groups and galaxies from the zCOSMOS-bright redshift survey in the COSMOS field. The fraction of galaxies with early-type morphologies increases monotonically with M(B) luminosity and stellar mass and with cosmic epoch. It is higher in the groups than elsewhere, especially at later epochs. The emerging environmental effect is superposed on a strong global mass-driven evolution, and at z similar to 0.5 and log(M(*)/M(circle dot)) similar to 10.2, the effect of the group environment is equivalent to (only) about 0.2 dex in stellar mass or 2 Gyr in time. The stellar mass function of galaxies in groups is enriched in massive galaxies. We directly determine the transformation rates from late to early morphologies, and for transformations involving color and star formation indicators. The transformation rates are systematically about twice as high in the groups as outside, or up to three to four times higher correcting for infall and the appearance of new groups. The rates reach values as high as 0.3-0.7 Gyr(-1) in the groups (for masses around the crossing mass 10(10.5) M(circle dot)), implying transformation timescales of 1.4-3 Gyr, compared with less than 0.2 Gyr(-1), i.e., timescales >5 Gyr, outside of groups. All three transformation rates decrease at higher stellar masses, and must also decrease at lower masses below 10(10) M(circle dot) which we cannot probe well. The rates involving color and star formation are consistently higher than those for morphology, by a factor of about 50%. Our conclusion is that the transformations that drive the evolution of the overall galaxy population since z similar to 1 must occur at a rate two to four times higher in groups than outside of them.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据