4.7 Article

ON THE HYDRODYNAMIC INTERPLAY BETWEEN A YOUNG NUCLEAR STARBURST AND A CENTRAL SUPERMASSIVE BLACK HOLE

期刊

ASTROPHYSICAL JOURNAL
卷 716, 期 1, 页码 324-331

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/716/1/324

关键词

accretion, accretion disks; galaxies: active; galaxies: starburst; hydrodynamics

资金

  1. CONACYT-Mexico [60333, 82912]
  2. Spanish Ministry of Science and Innovation [AYA2007-67965-C03-01]
  3. Consolider-Ingenio 2010 Program grant [CSD2006-00070]
  4. Czech Academy of Science [2009-2010]
  5. Academy of Sciences of the Czech Republic [AVOZ10030501]
  6. Center for Theoretical Astrophysics of the Ministry of Education, Youth and Sports of the Czech Republic [LC06014]

向作者/读者索取更多资源

We present one-dimensional numerical simulations, which consider the effects of radiative cooling and gravity on the hydrodynamics of the matter reinserted by stellar winds and supernovae within young nuclear starbursts (NSBs) with a central supermassive black hole (SMBH). The simulations confirm our previous semi-analytic results for low-energetic starbursts, evolving in a quasi-adiabatic regime, and extend them to more powerful starbursts evolving in the catastrophic cooling regime. The simulations show a bimodal hydrodynamic solution in all cases. They present a quasi-stationary accretion flow onto the black hole, defined by the matter reinserted by massive stars within the stagnation volume and a stationary starburst wind, driven by the high thermal pressure acquired in the region between the stagnation and the starburst radii. In the catastrophic cooling regime, the stagnation radius rapidly approaches the surface of the starburst region, as one considers more massive starbursts. This leads to larger accretion rates onto the SMBH and concurrently to powerful winds able to inhibit interstellar matter from approaching the NSB. Our self-consistent model thus establishes a direct physical link between the SMBH accretion rate and the nuclear star formation activity of the host galaxy and provides a good upper limit to the accretion rate onto the central black hole.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据