4.7 Article

INDICATORS OF INTRINSIC ACTIVE GALACTIC NUCLEUS LUMINOSITY: A MULTI-WAVELENGTH APPROACH

期刊

ASTROPHYSICAL JOURNAL
卷 720, 期 1, 页码 786-810

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/720/1/786

关键词

galaxies: Seyfert; infrared: galaxies

资金

  1. NASA [1287640, NNX07AQ36G]
  2. Alfred P. Sloan Foundation
  3. National Science Foundation
  4. U.S. Department of Energy
  5. Japanese Monbukagakusho
  6. Max Planck Society
  7. Higher Education Funding Council for England
  8. American Museum of Natural History
  9. Astrophysical Institute Potsdam
  10. University of Basel
  11. University of Cambridge
  12. Case Western Reserve University
  13. University of Chicago
  14. Drexel University
  15. Fermilab
  16. Institute for Advanced Study
  17. Japan Participation Group
  18. Johns Hopkins University
  19. Joint Institute for Nuclear Astrophysics
  20. Kavli Institute for Particle Astrophysics and Cosmology
  21. Korean Scientist Group
  22. Chinese Academy of Sciences
  23. Los Alamos National Laboratory
  24. Max-Planck-Institute for Astronomy (MPIA)
  25. Max-Planck-Institute for Astrophysics (MPA)
  26. New Mexico State University
  27. Ohio State University
  28. University of Pittsburgh
  29. University of Portsmouth
  30. Princeton University
  31. United States Naval Observatory
  32. University of Washington

向作者/读者索取更多资源

Active galactic nuclei (AGNs) consist of an accretion disk around a supermassive black hole which in turn is surrounded by an obscuring torus of dust and gas. As the resulting geometry of this system affects the observable properties, quantifying isotropic indicators of intrinsic AGN luminosity is important in selecting unbiased samples of AGNs. In this paper, we consider five such proxies: the luminosities of the [O III]lambda 5007 line, the [O IV]25.89 mu m line, the mid-infrared (MIR) continuum emission by the torus, and the radio and hard X-ray (E > 10 keV) continuum emission. We compare these different proxies using two complete samples of low-redshift Type 2 AGNs selected in a homogeneous way based on different indicators: an optically selected [O III] sample and an MIR-selected 12 mu m sample. To assess the relative merits of these proxies, we have undertaken two analyses. First, we examine the correlations between all five different proxies, and find better agreement for the [O IV], MIR, and [0111] luminosities than for the hard X-ray and radio luminosities. Next, we compare the ratios of the fluxes of the different proxies to their values in unobscured Type 1 AGNs. The agreement is best for the ratio of the [O IV] and MIR fluxes, while the ratios of the hard X-ray to [O III], [O IV], and MW fluxes are systematically low by about an order of magnitude in the Type 2 AGNs, indicating that hard X-ray-selected samples do not represent the full Type 2 AGN population. In a similar spirit, we compare different optical and MIR diagnostics of the relative energetic contributions of AGN and star formation processes in our samples of Type 2 AGNs. We find good agreement between the various diagnostic parameters, such as the equivalent width of the MIR polycyclic aromatic hydrocarbon features, the ratio of the MIR [O IV]/[Ne II] emission lines, the spectral index of the MIR continuum, and the commonly used optical emission-line ratios. Finally, we test whether the presence of cold gas associated with star formation leads to an enhanced conversion efficiency of AGN ionizing radiation into [O III] or [O IV] emission. We find that no compelling evidence exists for this scenario for the luminosities represented in this sample (L(bol) approximate to 10(9) - 8 x 10(11) L(circle dot)).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据