4.8 Article

Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene, trichloroethene, cis-dichloroethene and vinyl chloride

期刊

WATER RESEARCH
卷 36, 期 17, 页码 4193-4202

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0043-1354(02)00151-3

关键词

anaerobic reductive dechlorination; DGGE; microorganisms; bioaugmentation

向作者/读者索取更多资源

An anaerobic mixed microbial culture was enriched from soil and groundwater taken from a site contaminated with trichloroethene (TCE). This enrichment culture was divided into four subcultures amended separately with either perchloroethene (PCE), TCE, cis-dichloroethene (cDCE) or vinyl chloride (VC). In each of the four subcultures, the chlorinated ethenes were rapidly, consistently, and completely converted to ethene at rates of 30-50 mumol/l of culture per day, or an average 160 mu-electron equivalents/l of culture per day. These cultures were capable of sustained and rapid dechlorination of VC, and could not dechlorinate 1,2-dichloroethane, differentiating them from Dehalococcoides ethenogenes, the only known isolate capable of complete dechlorination of PCE to ethene. Chloroform (CF) and 1,1,1-trichloroethane, frequent groundwater co-contaminants with TCE and PCE, inhibited chlorinated ethene dechlorination. Most strongly inhibited was the final conversion of VC to ethene, with complete inhibition occurring at an aqueous CIF concentration of 2.5 muM. Differences in rates and community composition developed between the different subcultures, including the loss of the VC enrichment culture's ability to dechlorinate PCE. Denaturing gradient gel electrophoresis of amplified bacterial 16S rRNA gene fragments identified three different DNA sequences in the enrichment cultures, all phylogenetically related to D. ethenogenes. Based on the PCR-DGGE results and substrate utilization patterns, it is apparent that significant mechanistic differences exist between each step of dechlorination from TCE to ethene, especially for the last important dechlorination step from VC to ethene. (C) 2002 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据