4.3 Review

Multidrug resistance and cancer: The role of the human ABC transporter ABCG2

期刊

CURRENT PROTEIN & PEPTIDE SCIENCE
卷 3, 期 5, 页码 503-511

出版社

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/1389203023380521

关键词

-

向作者/读者索取更多资源

A variety of human cancers become resistant or are intrinsically resistant to treatment with conventional chemotherapy, a phenomenon called multidrug resistance. This broad-based resistance results in large part, but not solely, from overexpression of members of the ATP-binding cassette (ABC) superfamily of membrane transporters, including P-glycoprotein, various members of the multidrug resistance associated proteins (MRPs), and ABCG2, also known as MXR1, BCRP, and ABCP. When overexpressed in cell lines, ABCG2 has the ability to confer high levels of resistance to anthracyclines, mitoxantrone, bisantrene, and the camptothecins topotecan and SN-38. This review focuses on the discovery, the biochemistry and the normal physiology of human ABCG2, a novel ABC half transporter expressed abundantly in placenta, as well as in liver, intestine and stem cells. ABCG2 may serve a protective function by preventing toxins from entering cells as well as potentially playing a role in regulating stem cell differentiation. We also discuss the involvement of ABCG2 in multidrug resistance in cancer, especially with regard to acute myeloid leukemia. The mechanism by which substrates are recognized by ABCG2 and how the energy of ATP hydrolysis is transduced into transport remain elusive. A complete understanding of the mechanism and biological function of ABCG2 will be important for understanding its normal physiology as well as potentially for the development of novel chemotherapeutic treatment strategies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据