4.7 Article

THE S1 SHELL AND INTERSTELLAR MAGNETIC FIELD AND GAS NEAR THE HELIOSPHERE

期刊

ASTROPHYSICAL JOURNAL
卷 714, 期 2, 页码 1679-1688

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/714/2/1679

关键词

cosmic background radiation; ISM: clouds; ISM: magnetic fields; ISM: structure; Sun: heliosphere

资金

  1. NASA [NAG5-13107, NNG05GD36G]

向作者/读者索取更多资源

Many studies of the Loop I magnetic superbubble place the Sun at the edges of the bubble. One recent study models the polarized radio continuum of Loop I as two magnetic shells with the Sun embedded in the rim of the S1 shell. If the Sun is in such a shell, it should be apparent in both the local interstellar magnetic field and the distribution of nearby interstellar material. The properties of these subshells are compared to the interstellar magnetic field and the distribution of interstellar Fe+ and Ca+ within similar to 55 pc of the Sun. Although the results are not conclusive, the interstellar magnetic field direction obtained from polarized stars within similar to 30 pc is consistent with the interstellar magnetic field direction of the S1 shell. The distribution of nearby interstellar Fe+ with log N(Fe+) < 12.5 cm(-2) is described equally well by a uniform distribution or an origin in spherical shell-like features. Higher column densities of Fe+ (log N(Fe+) > 12.5 cm(-2)) tend to be better described by the path length of the sightline through the S1 and S2 subshells. Column densities of the recombinant ion Ca+ are found to increase with the strength of the interstellar radiation field, rather than with star distance or total pathlength through the two magnetic subshells. The ion Ca+ cannot be used to trace the distribution of local interstellar gas unless the spatial variations in the radiation field are included in the calculation of the ionization balance, in addition to possible abundance variations. The result is that a model of Loop I as composed of two spherical magnetic subshells remains a viable description of the distribution of nearby low density interstellar medium, but is not yet proven.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据