4.8 Article

Selective, Spontaneous One-Way Oil-Transport Fabrics and Their Novel Use for Gauging Liquid Surface Tension

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 7, 期 41, 页码 22874-22880

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.5b05678

关键词

one-way fluid transport; directional fluid transport; liquid transport; fabric; sensor; surface tension; coating

资金

  1. Australian Research Council [ARC DP150100406]

向作者/读者索取更多资源

Thin porous materials that can spontaneously transport oil fluids just in a single direction have great potential for making energy-saving functional membranes. However, there is little data for the preparation and functionalities of this smart material. Here, we report a novel method to prepare one-way oil-transport fabrics and their application in detecting liquid surface tension. This functional fabric was prepared by a two-step coating process to apply flowerlike ZnO nanorods, fluorinated decyl polyhedral oligomeric silsesquioxanes, and hydrolyzed fluorinated alkylsilane on a fabric substrate. Upon one-sided UV irradiation, the coated fabric shows a one-way transport feature that allows oil fluid transport automatically from the unirradiated side to the UV-irradiated surface, but it stops fluid transport in the opposite direction. The fabric still maintains high superhydrophobicity after UV treatment. The one-way fluid transport takes place only for the oil fluids with a specific surface tension value, and the fluid selectivity is dependent on the UV treatment time. Changing the UV irradiation time from 6 to 30 h broadened the one-way transport for fluids with surface tension from around 22.3 mN/m to a range of 22.3-56.7 mN/m. We further proved that this selective one-way oil transport can be used to estimate the surface tension of a liquid simply by observing its transport feature on a series of fabrics with different one-way oil-transport selectivities. To our knowledge, this is the first example to use one-way fluid-transport materials for testing the liquid surface tension. It may open up further theoretical studies and the development of novel fluid sensors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据