4.7 Article

THERMAL INSTABILITY WITH ANISOTROPIC THERMAL CONDUCTION AND ADIABATIC COSMIC RAYS: IMPLICATIONS FOR COLD FILAMENTS IN GALAXY CLUSTERS

期刊

ASTROPHYSICAL JOURNAL
卷 720, 期 1, 页码 652-665

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/720/1/652

关键词

conduction; galaxies: clusters: intracluster medium; instabilities; magnetic fields

资金

  1. NASA, Chandra X-ray Center [PF8-90054, PF7-80049]
  2. NASA [NAS8-03060, NNX10AC95G]
  3. David and Lucile Packard Foundation
  4. National Science Foundation
  5. NASA [135932, NNX10AC95G] Funding Source: Federal RePORTER

向作者/读者索取更多资源

Observations of the cores of nearby galaxy clusters show Ha and molecular emission-line filaments. We argue that these are the result of local thermal instability in a globally stable galaxy cluster core. We present local, high-resolution, two-dimensional magnetohydrodynamic simulations of thermal instability for conditions appropriate to the intracluster medium (ICM); the simulations include anisotropic thermal conduction along magnetic field lines and adiabatic cosmic rays. Thermal conduction suppresses thermal instability along magnetic field lines on scales smaller than the Field length (greater than or similar to 10 kpc for the hot, diffuse ICM). We show that the Field length in the cold medium must be resolved both along and perpendicular to the magnetic field in order to obtain numerically converged results. Because of negligible conduction perpendicular to the magnetic field, thermal instability leads to fine scale structure in the perpendicular direction. Filaments of cold gas along magnetic field lines are thus a natural consequence of thermal instability with anisotropic thermal conduction. This is true even in the fully nonlinear regime and even for dynamically weak magnetic fields. The filamentary structure in the cold gas is also imprinted on the diffuse X-ray-emitting plasma in the neighboring hot ICM. Non linearly, filaments of cold (similar to 10(4) K) gas should have lengths (along the magnetic field) comparable to the Field length in the cold medium similar to 10(-4) pc! Observations show, however, that the atomic filaments in clusters are far more extended, similar to 10 kpc. Cosmic-ray pressure support (or a small-scale turbulent magnetic pressure) may resolve this discrepancy: even a small cosmic-ray pressure in the diffuse ICM, similar to 10(-4) of the thermal pressure, can be adiabatically compressed to provide significant pressure support in cold filaments. This is qualitatively consistent with the large population of cosmic rays invoked to explain the atomic and molecular line ratios observed in filaments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据