4.7 Article

FRAGMENTATION AND EVOLUTION OF MOLECULAR CLOUDS. II. THE EFFECT OF DUST HEATING

期刊

ASTROPHYSICAL JOURNAL
卷 710, 期 2, 页码 1343-1364

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/710/2/1343

关键词

hydrodynamics; ISM: clouds; methods: numerical; stars: formation

资金

  1. NASA [NAG5-10826, NAG5-13271]
  2. Canada Research Chair program
  3. NSERC
  4. NSF [AST 0607793]
  5. NASA GSRP Fellowship Program
  6. NASA Prostdoctoral Program

向作者/读者索取更多资源

We investigate the effect of heating by luminosity sources in a simulation of clustered star formation. Our heating method involves a simplified continuum radiative transfer method that calculates the dust temperature. The gas temperature is set by the dust temperature. We present the results of four simulations; two simulations assume an isothermal equation of state and the two other simulations include dust heating. We investigate two mass regimes, i. e., 84 M(circle dot) and 671 M(circle dot), using these two different energetics algorithms. The mass functions for the isothermal simulations and simulations that include dust heating are drastically different. In the isothermal simulation, we do not form any objects with masses above 1 M(circle dot). However, the simulation with dust heating, while missing some of the low-mass objects, forms high-mass objects (similar to 20 M(circle dot)) which have a distribution similar to the Salpeter initial mass function. The envelope density profiles around the stars formed in our simulation match observed values around isolated, low-mass star-forming cores. We find the accretion rates to be highly variable and, on average, increasing with final stellar mass. By including radiative feedback from stars in a cluster-scale simulation, we have determined that it is a very important effect which drastically affects the mass function and yields important insights into the formation of massive stars.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据