4.7 Article

BUOYANCY INSTABILITIES IN GALAXY CLUSTERS: CONVECTION DUE TO ADIABATIC COSMIC RAYS AND ANISOTROPIC THERMAL CONDUCTION

期刊

ASTROPHYSICAL JOURNAL
卷 699, 期 1, 页码 348-361

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/699/1/348

关键词

convection; cooling flows; galaxies: active; galaxies: clusters: general; magnetic fields

向作者/读者索取更多资源

Using a linear stability analysis and two- and three-dimensional nonlinear simulations, we study the physics of buoyancy instabilities in a combined thermal and relativistic (cosmic ray) plasma, motivated by the application to clusters of galaxies. We argue that the cosmic-ray diffusion time is likely to be long compared to the buoyancy time on large length scales, so that cosmic rays are effectively adiabatic. If the cosmic-ray pressure p(cr) is greater than or similar to 25% of the thermal pressure, and the cosmic-ray entropy p(cr)/rho(4/3) (where rho is the thermal-plasma density) decreases outward, cosmic rays drive an adiabatic convective instability analogous to Schwarzschild convection in stars. Global simulations of galaxy cluster cores show that this instability saturates by reducing the cosmic-ray entropy gradient and driving efficient convection and turbulent mixing. At larger radii in cluster cores where cosmic-ray pressure is negligible, the thermal plasma is unstable to the heat-flux-driven buoyancy instability (HBI), a convective instability generated by anisotropic thermal conduction and a background conductive heat flux. The HBI saturates by rearranging the magnetic field lines to become largely perpendicular to the local gravitational field; the resulting turbulence also primarily mixes plasma in the perpendicular plane. Cosmic-ray-driven convection and the HBI may contribute to redistributing metals produced by Type Ia supernovae in clusters. Our calculations demonstrate that adiabatic simulations of galaxy clusters can artificially suppress the mixing of thermal plasma. When anisotropic thermal conduction is included, the buoyant response of the thermal plasma is not governed by the stable entropy gradient, and mixing (driven by mergers, cosmic ray buoyancy, etc.) is more effective. Such mixing may contribute to cosmic rays being distributed throughout the cluster volume.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据