4.7 Article

A KECK HIRES DOPPLER SEARCH FOR PLANETS ORBITING METAL-POOR DWARFS. II. ON THE FREQUENCY OF GIANT PLANETS IN THE METAL-POOR REGIME

期刊

ASTROPHYSICAL JOURNAL
卷 697, 期 1, 页码 544-556

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/697/1/544

关键词

planetary systems: formation; stars: abundances; stars: statistics; techniques: radial velocities

向作者/读者索取更多资源

We present an analysis of three years of precision radial velocity (RV) measurements of 160 metal-poor stars observed with HIRES on the Keck 1 telescope. We report on variability and long-term velocity trends for each star in our sample. We identify several long-term, low-amplitude RV variables worthy of followup with direct imaging techniques. We place lower limits on the detectable companion mass as a function of orbital period. Our survey would have detected, with a 99.5% confidence level, over 95% of all companions on low-eccentricity orbits with velocity semiamplitude K greater than or similar to 100 m s(-1), or M-p sin i greater than or similar to 3.0 M-J(P/yr)((1/3)), for orbital periods P less than or similar to 3 yr. None of the stars in our sample exhibits RV variations compatible with the presence of Jovian planets with periods shorter than the survey duration. The resulting average frequency of gas giants orbiting metal-poor dwarfs with -2.0 less than or similar to[Fe/H]less than or similar to -0.6 is f(p) < 0.67% (at the 1 sigma confidence level). We examine the implications of this null result in the context of the observed correlation between the rate of occurrence of giant planets and the metallicity of their main-sequence solar-type stellar hosts. By combining our data set with the Fischer & Valenti (2005) uniform sample, we confirm that the likelihood of a star to harbor a planet more massive than Jupiter within 2 AU is a steeply rising function of the host's metallicity. However, the data for stars with -1.0 less than or similar to[Fe/H]less than or similar to 0.0 are compatible, in a statistical sense, with a constant occurrence rate fp similar or equal to 1%. Our results can usefully inform theoretical studies of the process of giant-planet formation across two orders of magnitude in metallicity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据