4.8 Article

A cell-specific, prenylation-independent mechanism regulates targeting of type II RACs

期刊

PLANT CELL
卷 14, 期 10, 页码 2431-2450

出版社

OXFORD UNIV PRESS INC
DOI: 10.1105/tpc.005561

关键词

-

向作者/读者索取更多资源

The RHO proteins, which regulate numerous signaling cascades, undergo prenylation, facilitating their interaction with membranes and with proteins called RHO-GDP dissociation inhibitors. It has been suggested that prenylation is required for RHO function. Eleven RHO-related proteins were identified in Arabidopsis. Eight of them are putatively prenylated. We show that targeting of the remaining three proteins, AtRAC7, AtRAC8, and AtRAC10, is prenylation independent, requires palmitoylation, and occurs by a cell-specific mechanism. AtRAC8 and AtRAC10 could not be prenylated by either farnesyltransferase or geranylgeranyltransferase l, whereas AtRAC7 could be prenylated by both enzymes in yeast. The association of AtRAC7 with the plasma membrane in plants did not require farnesyltransferase or a functional CaaX box. Recombinant AtRAC8 was palmitoylated in vitro, and inhibition of protein palmitoylation relieved the association of all three proteins with the plasma membrane. Interestingly, AtRAC8 and a constitutively active mutant, Atrac7mV(15), were not associated with the plasma membrane in root hair cells, whose elongation requires the localization of prenylated RHOs in the plasma membrane at the cell tip. Moreover, Atrac7mV(15) did not induce root hair deformation, unlike its prenylated homologs. Thus, AtRAC7, AtRAC8, and AtRAC10 may represent a group of proteins that have evolved to fulfill unique functions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据