4.5 Review

Impaired dopamine storage resulting from α-synuclein mutations may contribute to the pathogenesis of Parkinson's disease

期刊

HUMAN MOLECULAR GENETICS
卷 11, 期 20, 页码 2395-2407

出版社

OXFORD UNIV PRESS
DOI: 10.1093/hmg/11.20.2395

关键词

-

向作者/读者索取更多资源

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the inability to initiate, execute and control movement. Neuropathologically, there is a striking loss of dopamine-producing neurons in the substantia nigra pars compacta, accompanied by depletion of dopamine in the striatum. Most forms of PD are sporadic, though in some cases familial inheritance is observed. In the late 1990s, two mutations in the a-synuclein gene were linked to rare, autosomal dominant forms of PD. Previously cloned from cholinergic vesicles of the Torpedo electric ray, a-synuclein is highly enriched in presynaptic nerve terminals and appears to be involved in synapse maintenance and plasticity. It is expressed ubiquitously in the brain, raising the important question of why dopaminergic neurons are primarily targeted in persons carrying mutations in a-synuclein. In this article, we review the current literature on, a-synuclein and suggest a possible role for this protein in vesicle recycling via its regulation of phospholipase D2, its fatty acid-binding properties, or both. Exogenous application of dopamine, as well as redistribution of vesicular dopamine to the cytoplasm, can be toxic to dopaminergic neurons. Thus, impaired neurotransmitter storage arising from mutations in a-synuclein could lead to cytoplasmic accumulation of dopamine. The breakdown of this labile neurotransmitter in the cytoplasm could, in turn, promote oxidative stress and metabolic dysfunction, both of which have been. observed in nigral tissue from PD patients.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据