4.7 Article

INFLATING AND DEFLATING HOT JUPITERS: COUPLED TIDAL AND THERMAL EVOLUTION OF KNOWN TRANSITING PLANETS

期刊

ASTROPHYSICAL JOURNAL
卷 702, 期 2, 页码 1413-1427

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/702/2/1413

关键词

planetary systems; planets and satellites: general

资金

  1. NSF [AST-0832769]
  2. Division Of Astronomical Sciences
  3. Direct For Mathematical & Physical Scien [0807672] Funding Source: National Science Foundation

向作者/读者索取更多资源

We examine the radius evolution of close in giant planets with a planet evolution model that couples the orbital-tidal and thermal evolution. For 45 transiting systems, we compute a large grid of cooling/contraction paths forward in time, starting from a large phase space of initial semimajor axes and eccentricities. Given observational constraints at the current time for a given planet (semimajor axis, eccentricity, and system age), we find possible evolutionary paths that match these constraints, and compare the calculated radii to observations. We find that tidal evolution has two effects. First, planets start their evolution at larger semimajor axis, allowing them to contract more efficiently at earlier times. Second, tidal heating can significantly inflate the radius when the orbit is being circularized, but this effect on the radius is short-lived thereafter. Often circularization of the orbit is proceeded by a long period while the semimajor axis slowly decreases. Some systems with previously unexplained large radii that we can reproduce with our coupled model are HAT-P-7, HAT-P-9, WASP-10, and XO-4. This increases the number of planets for which we can match the radius from 24 (of 45) to as many as 35 for our standard case, but for some of these systems we are required to be viewing them at a special time around the era of current radius inflation. This is a concern for the viability of tidal inflation as a general mechanism to explain most inflated radii. Also, large initial eccentricities would have to be common. We also investigate the evolution of models that have a floor on the eccentricity, as may be due to a perturber. In this scenario, we match the extremely large radius of WASP-12b. This work may cast some doubt on our ability to accurately determine the interior heavy element enrichment of normal, noninflated close in planets, because of our dearth of knowledge about these planets' previous orbital-tidal histories. Finally, we find that the end state of most close in planetary systems is disruption of the planet as it moves ever closer to its parent star.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据