4.7 Article

SIMULATIONS OF BARYON ACOUSTIC OSCILLATIONS. II. COVARIANCE MATRIX OF THE MATTER POWER SPECTRUM

期刊

ASTROPHYSICAL JOURNAL
卷 700, 期 1, 页码 479-490

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/700/1/479

关键词

large-scale structure of universe; cosmology: theory

资金

  1. Grants-in-Aid for Scientific Research [21540263] Funding Source: KAKEN

向作者/读者索取更多资源

We use 5000 cosmological N-body simulations of 1 h(-3) Gpc(3) box for the concordance Lambda CDM model in order to study the sampling variances of a nonlinear matter power spectrum. We show that the non-Gaussian errors can be important even on large length scales relevant for baryon acoustic oscillations (BAOs). Our findings are the following: (1) the non-Gaussian errors degrade the cumulative signal-to-noise ratios (S/Ns) for the power spectrum amplitude by up to a factor of 2 and 4 for redshifts z = 1 and 0, respectively; ( 2) there is little information on the power spectrum amplitudes in the quasi-nonlinear regime, confirming the previous results; (3) the distribution of power spectrum estimators at BAO scales, among the realizations, is well approximated by a Gaussian distribution with variance that is given by the diagonal covariance component. (4) For the redshift-space power spectrum, the degradation in S/N by non-Gaussian errors is mitigated due to nonlinear redshift distortions; (5) for an actual galaxy survey, the additional shot noise contamination compromises the cosmological information inherent in the galaxy power spectrum, but also mitigates the impact of non-Gaussian errors. The S/N is degraded by up to 30% for a Wide-Field Fiber-Fed Optical Multi-Object Spectrograph-type survey; (6) the finite survey volume causes additional non-Gaussian errors via the correlations of long-wavelength fluctuations with the fluctuations we want to measure, further degrading the S/N values by about 30% even at high redshift z = 3.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据