4.6 Article

Derivation of spin Hamiltonians from the exact Hamiltonian:: Application to systems with two unpaired electrons per magnetic site -: art. no. 134430

期刊

PHYSICAL REVIEW B
卷 66, 期 13, 页码 -

出版社

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevB.66.134430

关键词

-

向作者/读者索取更多资源

The foundations and limits of S=1/2and S=1 spin Hamiltonians for systems with two unpaired electrons in two well-defined orbitals per site are discussed by merging accurate ab initio calculations in binuclear systems with the effective Hamiltonian theory. It is shown that, beyond the usual J(ij)(S) over cap (i).(S) over cap (j) terms, the effective spin Hamiltonian necessarily introduces four-body spin operators in the S=1/2 case and biquadratic terms in the S=1 formalism. The order of magnitude of these additional terms can be rationalized from a quasidegenerate perturbation theory expansion starting from a Hubbard-type Hamiltonian. This permits to discuss the physical mechanisms governing the reduction from the all electron Hamiltonian to the spin-only Hamiltonians and the conditions under which a further reduction from a spin Hamiltonian to the simplest Heisenberg-Dirac-Van Vleck form is possible. The overall discussion is illustrated by numerical calculations of the magnetic coupling between two Ni2+ cations in the K2NiF4 perovskite and between triply bonded carbon atoms in poly-ynes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据