4.7 Article

PULSED GAMMA-RAYS FROM PSR J2021+3651 WITH THE FERMI LARGE AREA TELESCOPE

期刊

ASTROPHYSICAL JOURNAL
卷 700, 期 2, 页码 1059-1066

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/700/2/1059

关键词

gamma rays: observations; pulsars: general; pulsars: individual (PSR J2021+3651)

资金

  1. STFC [ST/G002487/1] Funding Source: UKRI
  2. ICREA Funding Source: Custom
  3. Science and Technology Facilities Council [ST/G002487/1] Funding Source: researchfish

向作者/读者索取更多资源

We report the detection of pulsed gamma-rays from the young, spin-powered radio pulsar PSR J2021+3651 using data acquired with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (formerly GLAST). The light curve consists of two narrow peaks of similar amplitude separated by 0.468 +/- 0.002 in phase. The first peak lags the maximum of the 2 GHz radio pulse by 0.162 +/- 0.004 +/- 0.01 in phase. The integral gamma-ray photon flux above 100 MeV is (56 +/- 3 +/- 11) x 10(-8) cm(-2) s(-1). The photon spectrum is well described by an exponentially cut-off power law of the form dF/dE = kE(-Gamma)e((-E/Ec)), where the energy E is expressed in GeV. The photon index is Gamma = 1.5 +/- 0.1 +/- 0.1 and the exponential cut-off is E-c = 2.4 +/- 0.3 +/- 0.5 GeV. The first uncertainty is statistical and the second is systematic. The integral photon flux of the bridge is approximately 10% of the pulsed emission, and the upper limit on off-pulse gamma-ray emission from a putative pulsar wind nebula is < 10% of the pulsed emission at the 95% confidence level. Radio polarization measurements yield a rotation measure of RM = 524 +/- 4 rad m(-2) but a poorly constrained magnetic geometry. Re-analysis of Chandra X-ray Observatory data enhanced the significance of the weak X-ray pulsations, and the first peak is roughly phase aligned with the first gamma-ray peak. We discuss the emission region and beaming geometry based on the shape and spectrum of the gamma-ray light curve combined with radio and X-ray measurements, and the implications for the pulsar distance. Gamma-ray emission from the polar cap region seems unlikely for this pulsar.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据