3.8 Article

Glycosaminoglycan mimetics (RGTA) modulate adult skeletal muscle satellite cell proliferation in vitro

期刊

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH
卷 62, 期 1, 页码 46-55

出版社

WILEY
DOI: 10.1002/jbm.10192

关键词

satellite cells; regenerating agents; heparan sulfate mimetics; growth factor; fibroblast growth factor; scatter factor-hepatocyte growth factor; glycosaminoglycan

向作者/读者索取更多资源

Muscle regeneration occurs through the activation of satellite cells, which are stimulated to proliferate and to fuse into myofibers that will reconstitute the damaged muscle. We have previously reported that a family of new compounds called regenerating agents (RGTAs), which are polymers engineered to mimic heparan sulfates, stimulate in vivo tissue repair. One of these agents, RG1192, a dextran derivative substituted by CarboxyMethyl, Benzylamide, and Sulfate (noted CMBS, RGTA type), was shown to improve greatly the regeneration of rat skeletal muscle after severe crushing, denervation, and acute ischemia, In vitro, these compounds mimic the protecting and stabilizing properties of heparin or heparan sulfates toward heparin-binding growth factors (HBGFs). We hypothesized that RGTA could act by increasing the bioavailability of some HBGF involved in myoblast growth and thus asked whether RGTA would alter the ability of satellite cells to proliferate. Its effect was tested on primary cultures of rat satellite cells. The RG1192 stimulated the proliferation of satellite cells in vitro in a dose-dependent manner. It appeared to be as efficient as natural glycosaminoglycans (GAGs; heparan sulfate, dermatan sulfate, or keratan sulfate) in stimulating satellite cell proliferation but was about 100 times more efficient than heparin. RG1192 stimulated satellite cell proliferation by increasing the potency of fibroblast growth factor 2 and scatter factor-hepatocyte growth factor. It also partially restored myoblast proliferation of satellite cells with chlorate-induced hyposulfation. Taken together, Our results explain to some extent the improving effect of RGTA with a CMBS structure, such as the RG1192, on muscle regeneration in vivo by providing support for the hypothesis that RGTA may act by increasing the potency of some HBGFs during the proliferation phase of the regenerating muscle. (C) 2002 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据