4.7 Article

ELECTRON ACCELERATION AT A LOW MACH NUMBER PERPENDICULAR COLLISIONLESS SHOCK

期刊

ASTROPHYSICAL JOURNAL
卷 695, 期 1, 页码 574-579

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/695/1/574

关键词

acceleration of particles; plasmas; shock waves

资金

  1. Hiroshima University [18740153, 19047004]
  2. MEXT of Japan [17GS0208]

向作者/读者索取更多资源

A full particle simulation study is carried out on the electron acceleration at a collisionless, relatively low Alfven Mach number (M-A = 5), perpendicular shock. Recent self-consistent hybrid shock simulations have demonstrated that the shock front of perpendicular shocks has a dynamic rippled character along the shock surface of low Mach number perpendicular shocks. In this paper, the effect of the rippling of perpendicular shocks on the electron acceleration is examined by means of large-scale (ion-scale) two-dimensional full particle simulations. It has been shown that a large-amplitude electric field is excited at the shock front in association with the ion-scale rippling, and that reflected ions are accelerated upstream at a localized region where the shock-normal electric field of the rippled structure is polarized upstream. The current-driven instability caused by the highly accelerated reflected ions has a high growth rate of up to large-amplitude electrostatic waves. Energetic electrons are then generated by the large-amplitude electrostatic waves via electron surfing acceleration at the leading edge of the shock-transition region. The present result suggests that the electron surfing acceleration is also a common feature at low Mach number perpendicular collisionless shocks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据