4.6 Article Proceedings Paper

Impact of oxygen stress and energy availability on membrane stability of plant cells

期刊

ANNALS OF BOTANY
卷 90, 期 4, 页码 499-507

出版社

OXFORD UNIV PRESS
DOI: 10.1093/aob/mcf126

关键词

Acorus calamus L.; energy shortage; free fatty acids; lipid peroxidation; lipolytic acyl hydrolase; lipoxygenase; membrane intactness; N-acylphosphatidylethanolamine; O-2 stress; reactive oxygen species; Solanum tuberosum L.

向作者/读者索取更多资源

This article reviews the relationship between the energy status of plant cells under O-2 stress (e.g. waterlogging) and the maintenance of membrane intactness. using information largely derived from suspension cultures of anoxia-intolerant potato cells. Energy-related parameters measured were fermentation end-products (ethanol, lactate, alanine), respiratory rate, ATP, adenylate energy charge. nitrate reductase activity and biomass. ATP synthesis rates were calculated from the first four parameters, Reactive oxygen species were estimated from H2O2 and superoxide levels, and the enzymatic detoxification potential from the activity levels of catalase and superoxide dismutase. Structure-related parameters were total fatty acids, free fatty acids (FFAs), lipid hydroperoxides, total phospholipids, N-acylphosphatidylethanolamine (NAPE) and cell viability. The following issues are addressed in this review: (1) what is the impact of anoxia on membrane lipids and how does this relate to energy status: (2) does O-2 Per Se play a role in these changes; (3) under which conditions and to what extent does lipid peroxidation occur upon re-aeration and (4) can the effects of re-aeration be distinguished from those of anoxia? The emerging picture is a reappraisal of the relative contributions of anoxia and re-aeration. Two successive phases (pre-lytic and lytic) characterize potato cells under anoxia, They are connected by a threshold in ATP production rate, below which membrane lipids are hydrolysed to FFAs, and NAPE increases. Since lipid peroxidation occurs only when cells are reoxygenated during the lytic phase, its biological relevance in an already damaged system is questionable. (C) 2002 Annals of Botany Company.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据